
1661 

Acta Cryst. (1968). B24, 1661 
The Crystal Structure of 7-Hg3S2C12 

BY S. [)UROVff:* 
Crystallographic Laboratory, McGill University, Montreal, P.Q., Canada 

(Received 26 September 1967 and in revised form 13 March 1968) 

The order-disorder (OD) structure of y-Hg3S2CI2 has been solved from its X-ray diffraction pattern, 
which contains both sharp spots and diffuse streaks with maxima. The structure consists of equivalent 
layers. For each layer there are two possible positions relative to the preceding layer, so that the pairs 
formed by the preceding layer and the given layer in either of these two positions are geometrically 
equivalent. Thus the symmetry of the structure may be described by an OD-groupoid family, namely 

A(2) m m 
{(bx/2) 21/2 2} 
{(bl/2) 21/2 2} (category Ilia) 

Although, as indicated by the diffuse streaks, the structure is disordered and thus no space group can 
be assigned to it, all the crystals investigated contained blocks of three-dimensionally periodic structures 
(polytypes), most frequently with the symmetry A2/m and F2/m, which are special cases of the symmetry 
given above. The translation periods of the structure are b=16.82 (1), c=9.081 (6)A with ~=90 °, 
the 'width' of one layer is a0 = 4.664 (3) ,~ and there are four formula units within the one-layer unit. 
The structure contains two-dimensional networks of Hg3S pyramids with shared Hg-atoms, forming 

" S 1 2 +  [1-1g3 2Joo cations. The bonds Hg-S within these networks are covalent; Hg-CI bonds are ionic. The 
model of the structure explains the distribution of intensities in reciprocal space as well as some chemical 
and mechanical properties. 

Introduction 

As a part of a general project dealing with crystal 
growth by means of gas transfer reactions, initiated 
and supervised by Dr A.J. Frueh Jr in this Laboratory, 
the crystal structure of y-mercurydisulphonium chlo- 
ride (y-Hg3S2C12) has been solved. The crystals were 
prepared by Carlson (1966, 1967) as a by-product of 
his successful attempts to simulate the conditions lead- 
ing to the formation of mercury-ore deposits. 

The compound Hg3S2C12 was first described by Rose 
(1828) and its properties (e.g. photosensitivity) have 
since been studied (for references see Pascal, 1962), but 
only recently Puff & Kiister (1962) investigated the 
crystallographic properties of mercury-dichalcogenium 
halides and determined the crystal structure of 
Hg3S2C12. Carlson showed however that in addition to 
Puff & Kfister's structure (e-modification) there exist 
two more modifications, t -  and 7-Hg3S2C12. Puff, 
Harpain & Hoop (1966) independently found the same 
modifications and, moreover, gave them the same 
names. The structure of the c~-modification has been 
recently redetermined by Aurivillius (1967) and, inde- 
pendently, by Frueh & Gray (1968) in this Laboratory. 
Both these determinations confirmed Puff & Kiister's 
results. 

Experimental 

)'-Hg3S2C12 (Carlson, 1967) forms straw-yellow pris- 
matic crystals elongated in the e direction, reaching 
maximum dimensions of 0.5 x 0.5 x 3 mm. Morpho- 
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logically they exhibit orthorhombic symmetry (point 
group 2/mmm) and possess an excellent (100) cleavage. 
All the crystals investigated were twinned or formed 
parallel intergrowths. 

The diffraction pattern consists of sharp spots and 
diffuse streaks with maxima. The distribution of the 
intensities of the sharp spots is the same for all the 
crystals investigated; the distribution of the intensities 
along the diffuse streaks varies from crystal to crystal. 
The diffuse maxima can be divided into three mutually 
independent systems. One of them is present in all 
specimens and may be referred to a rectangular cell 
with 

a=9-328(5), b =  16.82(1), c=9.081(6) ,~,  

the diffuse streaks being parallel to a*. The density 
Dm =6"83(5) proves that this unit cell contains 8 for- 
mula units; the X-ray density calculated on this basis 
is 6.814. Indices hkl in the following will refer to this 
cell. The entire diffraction pattern may be described 
as follows: 

I. Sharp spots: 

hkl present only for h = Ft, k = 2~, l = 2[ (/~,/c, i integers) 
0kl present only for k = 2n. 

II. Diffuse streaks and maxima on them: 

~kl present only for k = 2 n +  1, l = 2 n +  1 (~ is a contin- 
uous variable) 

1st system of maxima (always present) for 
= h  (integer) 

2nd system of maxima (in some specimens absent) for 
~ = ( 2 n +  1)/2 

3rd system of maxima (in some specimens absent) for 
~ = ( 2 n +  1)/4 

Diffractions with k + l =  2n + 1 are absent .  
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The sharp spots exhibit orthorhombic symmetry, but 
the maxima on the diffuse streaks show for some spe- 
cimens orthorhombic, for other specimens only mono- 
clinic symmetry with the c axis unique. 

The crystals showing well developed diffuse maxima 
exhibit a slight deviation (about 0.5 °) of the angle 7 
from 90°; this is the cause of the doubting of some 
tines on the X-ray powder diffraction pattern observed 
earlier by Carlson (1966). 

For the measurement of the integrated intensities of 
the sharp spots a single-crystal diffractometer based on 
an equi-inclination Weissenberg geometry was used. 
The goniometer settings were calculated with a pro- 
gram written by Frueh (1966), and the calculation as 
well as the others mentioned below was carried out on 
an IBM 7044 computer. In order to reduce the dif- 
ficulties caused by high absorption (/z=670 cm -1 for 
Mo radiation), a needle-shaped crystal with average 
diameter of about 60 pm was selected and its shape 
measured with an optical goniometer and microscope. 
The morphological data were then used for the ab- 
sorption correction; this calculation was included in 
a general data reduction procedure, carried out using 
DTRDA and DTRDB programs written by Burnham 
(1961). Out of a total of 486 structure factors examined, 
304 turned out to be detectable. 

The measurement of peak intensities of diffuse 
maxima (Dornberger-Schiff, 1966; Sedlacek & Dorn- 
berger-Schiff, 1965) was considerably more difficult 
since only a few of about 40 crystals investigated yielded 
Weissenberg photographs with reasonably well devel- 
oped maxima. The best results were obtained with a 
larger crystal (about 0.1 x 0.2 mm in cross section) and 
Cu radiation. The peak intensities of stronger diffrac- 
tions were determined using a recording microden- 
sitometer and multiple-film teeknique; intensities of 
weak diffractions were estimated visually; the data re- 
duction was carried out in a manner similar to that 
used for sharp diffractions. The majority of the spe- 
cimens had the diffraction patterns exhibiting ortho- 
rhombic symmetry even for the diffuse maxima, but 
the relative values of the sums IF(hkl)12+lF(hkl)l z 
(A2-values) of the first system of these maxima turned 
out to be the same for all specimens and were, as we 
shall see, more valuable for the structure analysis than 
the individual [F(hkl)l ~- values would have been. A total 
of 190 (178 non-zero) such AZ-values were obtained. 

The observed distribution in reciprocal space cor- 
responds to a structure lacking periodicity in the a 
direction, built of two-dimensionally periodic A-face 
centred layers with periods b and e. It was assumed 
that it is an OD-structure in Dornberger-Schiff's (1964, 
1966) sense. 

The superposition structure 

The distribution of sharp diffractions (k = 2k) in recip- 
rocal space, taken by themselves, corresponds to a 
periodic structure, the so-called superposition structure 
(see Appendix). This has orthorhombic symmetry, lat- 

tice constants' d=a ,  b=b/2,  ~=c/2 and space group 
Pbmm, P21m or Pbm2. Its electron density ~(xyz) is 
related to the electron density of the actual structure 
O(xyz) by the equation 

~(xyz) = ½[O(xyz) + O(x, y + ½, z)] 

=½[O(xyz)+o(x,y,z+½)] . (1) 

Intensity statistics indicated the presence of a sym- 
metry centre (at least for the heavy atoms); thus Pbmm 
was tentatively selected. 

An attempt to solve the superposition structure by 
use of the minimum function failed because of heavy 
overlapping of the Hg-Hg vectors. However, a com- 
parison of the intensities I(hkO) with h + k = 2 n  with 
the l(hkO) values of the e modification (which, because 
of the space group 1213, are present only for h + k = 2n), 
revealed their close similarity. Thus it was concluded 
that the projections of both structures may contain 
much the same atomic configuration, which in the case 
of the e modification is repeated by a vector (al + az)/2. 
Two separate Patterson functions calculated with the 
IF(h£0)l z values w i th /~+~=2n  and w i t h / ~ + k = 2 n +  1 
respectively and the fact that pgm (the symmetry of 
the xy projection of Pbmm) is a subgroup of cmm (the 
symmetry of the xy projection of 1213) made it pos- 
sible to find the 2 and p coordinates of Hg atoms by 
eliminating the Hg-Hg vectors non-existent in the y 
modification. Fig. 1 shows the projections of the struc- 
tures of both the ~ and the 7 modification (superposi- 
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Fig. 1. x y  projection of the crystal structure of ~-Hg3S2CI2 
(above, based on Frueh & Gray's (1968) data) and of the 
superposition structure of 7-Hg3S2C12 (below) together with 
a coherently drawn diagram of the symmetry elements. Unit 
cells are outlined. 
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tion structure) alongside a coherently drawn diagram 
of the symmetry elements. 

The fact that the relative intensities I([#d) with the 
same ]~,~ and with ,l= 2n a n d / =  2n + 1 respectively were 
very similar, showed that the ~ coordinates, at least 
for heavy atoms, must be very close to 0 or ½. They 
were found using the generalized Patterson projection 
PO)(uv). The coordinates of the light atoms were then 
found by means of a three-dimensional Fourier syn- 
thesis based on trial coordinates of  Hg atoms. The 
superposition structure was refined by the Busing, 
Martin & Levy (1962) full-matrix least-squares pro- 
gram ORFLS, with the atomic scattering factors for 
neutral atoms published by Cromer & Waber (1965). 
During the refinement cycles each observation was 
assigned a weight inversely proportional to the square 
of its standard deviation as determined by the data 
reduction program from the counting statistics (Burn- 
ham, 1961). The observations below background level 
were replaced by values Jfolmin/[/3. For the last cycles 
of the refinement an anomalous dispersion correction 
was applied, as suggested by Patterson (1963). The 
correction values were taken from International Tables 
for X-ray Crystallography (1962). The final R value for 
all diffractions is 13.5%, for non-zero diffractions 8.9%. 
The difference synthesis after the last cycle proved the 

correctness of the superposition structure and thus the 
space group Pbmm as well. 

The final calculated structure factors together with 
the observed values are given in Table l, the positional 
and anisotropic thermal parameters are given in Table 
2. It should, however, be kept in mind that the tem- 
perature parameters in the expression for the tempera- 
ture factor 

r =  e x p  {-(# ,ahZ+ f12zk2 + f133 lz 

+ 2/3]zhk + 2fl]3h/+ 2#z3k/)} 

reflect both thermal and positional displacements of 
atoms from their positions listed in Table 2 (see below). 

The Hg(2) atoms in the superposition structure were 
found to contribute only with half weight to the struc- 
ture factors, compared with other atoms. Going back 
to the equation (1) defining the superposition structure, 
this must mean that such half-weight atoms occur 
either at x = 2 ,  y=~/2,  z=~ and (0~½) plus these co- 
ordinates, or at x = 2 ,  y = 0 3 +  1)/2, z = ~  and (0½½) plus 
these coordinates; thus they repeat with periods b = 2~ 
and e = 2 E  If, on the other hand, atoms occur at the 
positions related by the translations [~ = b/2 (and thus 
f:=e/2), they will show up in the superposition struc- 
ture with weight 1 and will not contribute to the diffuse 

T a b l e  l. Observed and calculated structure factors for the superposition structure 
In  the  c o l u m n s  f r o m  left  to  r ight  the  v a l u e s  o f  h, Fo a n d  F~ are l is ted.  U n d e t e c t a b l e  d i f f rac t ions  are  m a r k e d  by n. 

O0 

"6 , )  *T?.5 
13),0 -10~,0 
3 ~ . 0  -311.1 
311.1 318.0 

I 1~ .3  8%6 
8S,9 70.4 

? 1~9,~ - ~ . 8  
~,I SI.I 

e 15.1 14.1 
10 94.4 SO,) 
11 58, )  - 5 5 . )  
12 n 17.3 10,5 

1 9%6 -91.? 
76.I -44.1 

3 • 1).4 9.8 
4 9~.II I~.7 
| s 11.1) 16.1) 

76,0 .TT,II 
8 ~ , 8  11.$ 

4~.1 SO,9 
1 a 16.4 11.0 
11 43.4 -41.) 
t~ n le,9 -&1,1) 

0 1314 101.6 
t 1 1 . 8  -1~4,3 
,1 1@,9 56*4 
) 81,4 -I~,C 
4 1S4,6 1~0,5 

142.2 -144,9 
n 11.1 -11,) 

? 90.2 ..EE I 
132.6 136.3 
4).4 -).1.~ 

I0  • 15.15 -? ,2  
:1 82,1 . .~ ,? 

' 266.4 256,? 

J 1~?,I oI$1.~ 
4 1~9.3 -1.~6.5 

~ , )  ~,4 
12?.6 121e 

? n i.lS,6 24.3 
"~9,2 * l l , 9  

n 1.10 *II .O 
I 17,6 29,0 
).). • 4 . 6  )1~) 

^ 

~. ) ~ , o  315.6 
I ')'1, $ - 'ri. ,  4 
2 • 10.8 10,5 

4 1.?g.6 171.1 $ 46.~I -44.1 

11 M*1) 9~,6 1 51).6 -5).1 ? 30.2 ~ , 6  
?1,36,1 .12 '8 ,?  ~ 80~ 90.5 0 . 1 ) 0 . 0  7.8 

311,2 II.9 • 17.? ?.8 1) Y~*4 .4~,I 
t • 11.8 ~0~  4 • 17.7 . 4 . 3  10 ~I .3  -36.0 

10 81.~ IK~ll I~ TI,? -'~).4 11 • 21,9 11.4 
11 • 115  *,16.11 

~ • 18.0 1.1.? 0 l?~.J 17').9 
I • 10.) 11.$ ~J.? 14.0 1 '~ .J  -'~.? 
| 3 1 . 0  .,,~4.4 ~l a 12 .?  .-~.** 
) 51.9 -51.0 ~ 0 1 ~ 167,n-161.6 

~ k 8  Z?.¢ • 51,5 1)~4 
~.~ , , . ,  ~ - . ,  e . ,  , ~ .~ -~4 . .1  

6 • 14.3 -11.9 ) IE0.8 -t IHt.) IS (4.5 71.9 
? ~ . 1  *T)*4 4 (4.1 64.4 ? ~ . |  e10~.3 
8 • 1$.$ *J~ . t  $ ?$.1 -411.4 I) • 17.2 21.9 
9 46*5 48,? 6 114.0 116.5 1) 1"~.7 -4S.$ 

10 • 16 .8  ~ , l  7 '?6.) -?S.~ 10 ~E.1 56*9 
• ~0.7 19,0 11 • ~ . 7  -11 .6  

IS . I  e.1 ~ $ 1 
10 ~ -48 . ,  ~ • 1 , . 7  -1.? 

10.1.7 -110.9 Ir~.7 ~ . ?  1 1)6.J *~4J.11 
J' 144.0 ~18.0 13 ~ . 5  .4@.? ~ 05.0 - ~ . 4  
3 • ~1.9 -4.6 .~ 1 ~ . 7  101,8 
4 • 15.1) 1~.1) ~ I I 4 lOS,2 114.8 
5 141.3 -142.? $ • 1.,I.6 ,,~.$ 
I 40,4 al~..1 % ld1,$ - ~ l ~  I 10~.,1 -1C~,1) 
? • 14.$ . .~,)  I le'**q * ~ * t  • • 12.5 -21. ]  
O 74.0 "~..4 1 114.0 11~),3 ~ 41.8 $1.$ 
11 56.4 -60 .5  4 119.9 122.6 II 6-'3.0 61.~ 

S • 15.0 4.9 10 a 17.~ *24.7 
? 0 6 1 0 ~ 9  -10~.0 11 3J.9 **111.8 

• ~1.5 -,T?,I 
t13.8 1)2.1) ~4.? ~4.3 . ~ 1 

I ~1.6 -711,I) 10 n 25.6 -5 ,~  0 $6*$ i~, , l  
111-:' -91,4 11 • g'%9 *)0 ,5  1 100,0  *I01,4 
4~.8 4~,3 • I14.0 -7 ,~  | ~O,(S ]J~.4 
?0.$ ~ , 2  13 • ~4.? 21.7 3 • •1,6 - 0 t ~  

? • 16.1 20,6 4 SS.I M*0  
8 ~3.0 -4%6 ~ Z I ~S 1 ( ~ . 0 - 1 ¢ 1 t . 4  

I • Z;I..I 114.7 

0 80.6 l~.~ I J~.4 36,0 11 ,13.3 . ,~ .8  
1 41 .8  *48*? 4 76,1 ?4,([. 10 • 2~*7 -1 ,$  
2 116.0 6"?.4 5 23%) -21%2 11 ~0~ -46.$ 
1 7 3 . , - 8 0 , 1 )  76 ?6.3 74,~' 

41.1) 40~8 29.1) )S.5 '~ ? 1 
I "  17.? .43.3 : 132.4 134.) 

79,4 1~.7 1)4.0 -113.5 1 J P-.*1) 34.J 
? 40,.I -,I?..5 10 n 3~8.5 -I$.1 3 • %?*3 ~L.O 

11 • ;1'6.1 ,-,~S,1 .1 ~6.1 -.11.9 
9 0 12 54.7 ?3.7 4 44.1 ..r?.2 

$ = 20.e .=8.3 
1 ~ . O  -~e.6 ~ I I ~ n 1.8.8 11.? 

• 36.4 .~1.1) 7 n 14.8 13.? 
16.* 9.~ 1 ~4.0 2 1 1  8 n 19.7 -1 .8  
1A.4 ;9..1 2 36.4 36.8 11 n 21~.8 -14.0 

5 1 1 7  %5 ) • 16.2 -33.2 10 42.4  ~lO,JI 

0 141,5 1~6,6 
3401 =~9.3 
49,1 -34.0 

I ~ , S  -110,~ 

S • 2~.4 31.7 

~ . S  -~9.8 
O • 2J*g 1).4 

I • 1 | .7 -33.$ 
2 = ~0.6  -112.1 
.I • ~O.PJ 21.1 
4 4"! ' .9 J ~ t  
$ • 16.0 ~9.8 
4 • 34,0 *)(~If 

~ 1 0 1  

3S,8  ~ , 0  
39.7  -44 .3  

,I 49.4 4g.3  

4 41.4 4~.4 

~ I I I  

I 4 ~  41,3 

41.51 -~Til, 9 
4 ,19.7 ~ *L8  

I ~14.0 -,1J$,~ 

• 1)7,4 1,0,4 
7 174.4 - l?O, I  
8 $1).t 51.4 
11 • 30,]  15~ 

10 1'6,7 'T I , |  
11 $4,0 -'$0*8 

• ~ lO..g 

I 11.6 "32*4 
2 )~.~ .4~.1 
1 • Ll.i& -1 . 2  
4 97.0 ~ J  
$ • 20,4 15,0  
i ~ ) , 0  -41 ,5  

63 . )  -60.? 
8 • 2"/.) 4.0 
11 a 2~,9 37 .0  

1.0 n ;["3,0 9.7 
3%9 -11.8 

• Z6.6 - ~ o 0  

2 2  4 n  29.5 38.4 7 • )0.'~ -9.2 7 • , I~ .?  .46.~ 2 e  17.~ -1~.2 
? 30.] -7.4 8 a 14.~ ~ . 4  8 5~.~ |3.~ J '?•J.6 -64.4 

0 )0~,7 IC~.S S ~ . 0  ~5.0 t • 4~.1 37,6 4 90.4 ~,) 
1 120,? -121.6 • 58.3 ,.~1.? 10 • ;I'3.1 -1).9 /~ " ) ~ a 26.8 - )$ .?  

6 • ~ . 3  - I 0 , 2  
J).O .10.0 ~ . ?  1.3 7 ~rdll ..~S.O u a  .?~.? ~ 72  ~ ~ 1 ,  

4 )24.9 1J'?.9 30..1 0 ~6.~ ~8,7 
$ 101.8 *IW,~ I 116.7 1311.4 0 • 1).3 =4.6 ) • 2 9 , 0  -4 .4  ; . , . o  .,., : 4o.4 4 1 .  , , . , . , . 1 , . ,  ; I" .8 -4" ~ ' 4  

79.6 -?~.8 "~.1 -4~.3 ~ ~ . )  I (~ .8  34.1 =11.3 
II 112,3 108,? 4 "~.5 -73,4 J • ~'1,9 10.7 6 • )4.0 -3.1 1 1~ .?  113,0 

: : , , . ,  , . ,  , , , . ,  , . , . o  , . ,  : 
1 23.$ -1.5 (4.4 58.9 5 14t1.11 =151.| '~J.6 -94.0 
,.: 7~a , ~ a  7 ~.~ ~,.~ , ..~ , . 4  ¢ , ~  , . , ,  -4,.~ 

54.1 40.0 • 44,9 -40.4 7 • 31.6 ;14.11 ~ 59*0 ~J.O 
l ?1.0 6'?.4 0 9~.3 f ) .S 4 •11,I ~0.~ 

) ~  "~ ez  s , . . 4  -4, . *  1 , 2 9 ~  . ~ . j  ~ . ~ . ~  - t . ~  
10 • 4~.4 ..~,7 | • 11.3 -~6.~ 8 ~7.3 .*4J.) 

I 1.10.9 *;21.1 ~ ~ . 3  ~ . 5  
1111.1) -120.~ 61.3 .4~.0 1 • 10.5 

1 T2.,  7C.O 4 : ~ . ,  30.7 ~ s 21,1 
101.0 1~.5  ~ . • ~6,1 25,0 q15,4 

? • | 5 . )  14.'~ 6 ?4.0 ~ . 6  4 • 24.5 
0 61,0 -64.0 ,~ $ • ~'J,t 

lC • 26.5 ~?.4 7 • 30.4 
?.1 4,1.1, )0 .0  | • 29.$ -l l%B 8 • 31.0 

_ ~ n 30,1 *15.3 9 • 3].1 
] 4 • )O.J 4.e 10 • 46.8 
4 • llJ,J 20.,I A 

o ~ ,  ~ . ,  ~ , . 7  6*0 v , 
1 ?~? -$9.5 4 • }C.4 -1".8 
~a  19,0 15,0 o ~ 

1'71.6 -1~S6.0 ~ 10 2 ) 63 .0  
4 15~.? 110.6 • ~ . 9  
5 • 20.6  14.8 0 48.2 - J S . e  3 tO¢,'~ 
4 86." ?'?.4 1 56.5 ..44.3 ' 61.$ 
7 I*~3.3 -10~.4 2 84.~ "~ .9  $ ~ 26..1 

~ . . . 4  ~,.2 1 " ~ "  ~.o , ~ 4  
• )1.~ -16.9 • 34.0 -4.9 T~.• 

1 76.1 65.1 ~ iS.? -66.1 8 • 3~.3 

1 .19.6 .~.8 I ?%0 *.~.~ 
2 • Ig.4 -11.? 2 ?'3.6 76*• I lcn'.8 

~...~ ~o, , ~,., . .4 ~ ..~ 
40. I  50.6 ) r ; ' .8 " ~ . 9  ?~.7 

4 n ~3.3 odq 4 '~6.5 "~ .0  ~ e 26.8 
60.4 .40.S 7 3~.3 -34.) 6 78.1) 

• 2v.9  " ~ . 9  O • 22.? 20*5 ? ~ 29.~ 
~0•~ 36*9 t O 6 5 , - T ; . 8  I 61..~ 

1 4~.9 24.C 1 • 3~.? 35.0 

; , 2  ¢ 1 ~  
o e~.l  

0 4,2,1 - ) 4 , 8  1 81.9 *EB.2 1 11.8 
) , * 8  ..88.9 ~ 46.9 ~0..4 2 '72.6 

121.$ 116.9 64.0 66.0 3 • 35.@ 

I n 2 3 . i  -11.0 4 ~8.4 6"?.8 4 85.6 
• , . 7  u . o  5 = , a  ~. ,  , ~ .6  

11g.7 -114.0 6 ~6.! ~g .?  6 • ~ . 1  

$ m .14.0 12,4 
012,0 6 • 36.~ 11),7 C 1}4,1 1~9.9 

%3 ? 71,3 -44.9 1 41.; . ) 6 . )  
10,9 ?. ~ 33,e l.'r,3 
*~.9 a q ) • ~ . ¢  -40,0 

..~.2 1 • .~.? -115  $ e. ~5.(~ 2.(' 
;'1,11 " 29,? -19,~ 6 ~0.~ ~ . 5  
X4.? .] -j )?.3 n," - ~).5 -S'.~ 

-~).~ 

} ~ 49,0 ~ , 6  ." ~R.6 •~.~ 
* • 14.C , .~.~ J ~ 2J,4 6.~ 

9J.? 2 44.8 2 1 t  J ~8.1 .,~J,~ 
.-~9.8 4 m ~IP,0 -13.R 

-44,6 6 • 2~,9 lq,1 

*,$I.0 ;c )).0 ~I~ ~ 6 • 
44,5 ) 111,1 -125,M 

a3,1 ~ • Z; .0 •0,9 1 51.r *49.4 
-36.1 6 • 2~,C 1.%c 2 5(I,5 63,2 

? I ~ . C  - 1 ~ . 8  J n 29.0 11.6 
) 8 ~O.~ 42. m 4 2e.4 ~.6 

- ~ . ?  10 46.4 38.6 A 
,-~4.3 h- • ,I 
7•.4 /~ I • 
"~J.0 l ~.6.) 65.5 
..0.7 I u 16.1 -4.1 2 u 1%" 21. • 

-76,0 2 n 18,5 *10,9 ) 5o,? -.~I.t 

411.? 4 n . ; . )  1) . )  

) ~ • 2.1.$ -~.O 

. -~ ,0  ~ m 29.4 ?.4.0 ~ ~ '? .2  ~ , ~  
"r1..1 ,3 a 2%3 -~%" 

?2.) 
-~O.C 0 9g.J 8~.~ 
t0.5 1 59 .e  *;" .O 



1664 THE CRYSTAL S T R U C T U R E  OF y-HgsS2C12 

diffractions. Slight deviations from such positions, 
leading to their true repetition periods b and e, would 
cause changes in the apparent thermal vibrations. If 
significant, these deviations can be revealed in analyz- 
ing the diffuse maxima. 

The symmetry of the real structure 

As was shown above, the structure may be thought of 
as being built of A-centred layers with periods b-~2b 
and c = 2~. Although arranged in a disordered manner, 
their superposition structure [see equation (1)] is peri- 
odic (space group Pbmm) irrespective of the disorder 
and does not depend on details of their arrangement, 
which varies from crystal to crystal. 

An arrangement of structural elements, as shown in 
Fig. 2 left, has the following properties: 

1. Its superposition structure has the space group 
and lattice constants demanded. 

2. It may be thought of as being built of geometri- 
cally equivalent layers with plane space group A2mm. 

3. Each layer is transformed into the next following 
layer, among others, by the partial symmetry opera- 
tions [..2], [.2:/2.] and either [b+z/2..] or [b-:/2..].* 

4. Starting from any one layer, two symmetry 
operations [b+z/2..] and [b-x~2..] lead to two different 

* The indices on the symbols for the twofold axis and for 
the glide plane indicate the factor with which the conventional 
translation component of b/2 has to be multiplied in order to 
obtain the actual translation component. Partial operations 
transform only certain parts of the structure and not the entire 
structure into itself. 

positions for the subsequent layer. The two pairs of 
layers formed in this way by the original and the sub- 
sequent layer are geometrically equivalent, one pair 
being transformed into the other, e.g. by the [ .m.] 
which transforms the original layer into itself and one 
possible position of the subsequent layer into the other 
possible position. Thus the symmetry of the structure 
is in keeping with the [lefmition of OD structures 
(Dornberger-Schiff, 1964, pp. l l-16).  This OD char- 
acter is the cause of the disorder and of the differences in 
arrangement of the layers occuring in different crystals. 

It is evident that partial symmetry operations are 
indispensable for the proper understanding of the 
structures of this kind. The set of the symmetry opera- 
tions in such cases does not form a group because they 
are not all total. But the partial operations converting 
a layer into a layer form a groupoid in the sense of 
Brandt (Dornberger-Schiff, 1964, pp. 16-18). Thus it is 
convenient to characterize the symmetry of the whole 
family of these OD structures (as described by 1. to 4.) 
by an OD-groupoid family symbol, giving in the first 
line the plane space group of the individual layer 
(2 symmetry), and, within pairs of curly brackets, in 
the second and third line the operations transforming 
one layer into the subsequent one (a symmetry). In 
our case the symbol reads 

A(2) m m 
{(b,/2) 2,/2 2} (2) 
{(61/2) 21/z 2} 

The parentheses indicate the direction of missing 
periodicity. The two separate lines for the a symmetry 

Table 2. Structure parameters for the superposition structure (related to ~ . )  
Standard deviations a are in parentheses 

Mult. 7c Y z" ,81x ,822 ,833 ,812 ,813 ,823 
Hg(1) 2 ½ 0 0 0"0063 (3) 0"0081 (4) 0"0311 (15) 0"0009 (4) 0 0" 
Hg(2) ~ 0"2218 (4) -0"0528 (5) ½ 0"0083 (5) 0"0106 (7) 0"0057 (18) -0"0023 (5) 0 0 
Hg(3) 2 0"1987 (3) ¼ 0 0"0069 (4) 0"0083 (5) 0"0631 (24) 0 0 0 
S 4 0"2471 (13) -0"0345 (16) 0 0"0046 (13) 0"0099 (22) 0"0215 (60) -0"0019 (15) 0 0 
El(l)  2 0"4708 (31) ¼ ½ 0"0217 (48) 0"0089 (31) 0"0173 (92) 0 0 0 
C1(2) 2 0"0162 (22) ¼ ½ 0"0060 (22) 0"0145 (34) 0"0128 (74) 0 0 0 

origin 

oa . . . .  [- -I 

12 o ~III 

o--o--o--o--q) 

t--' ' O O O O 0 

Structural element with 2 m m  point symmetry at Z=O ~ Z=l/2 

Fig. 2. The structure scheme of 7-Hg3S2C12 (right), showing two layers (one-layer unit outlined and the Zn-g(2 ) coordinates given) 
together with a coherently drawn diagram of the symmetry elements in the OD-groupoid family A(2)mm/{(b1/2)21122}/ 
{(bi/2)21/22}. 



S. I) UROVI(2 1665 

indicate that there are two different kinds of pairs of 
adjacent layers in the structure (Fig. 2). 

Within this OD-groupoid family there are two peri- 
odic structures with maximum degree of order (MDO 
structures). Both are monoclinic (c axis unique) and 
consist of equivalent triples of layers. The first, MDO1, 
is periodic after two layers and possesses symmetry 
A2/rn. The second, MDO2, is periodic after four layers, 
possesses symmetry F2/m and lattice constants 2a, b,c 
(Fig. 3). It is obvious that the first system of diffuse 
maxima corresponds to MDO1 and the second system 
to MDO2. General experience shows that the MDO 
structures occur most frequently among the members 
of the family of OD structures. Thus the fact that the 
first and the second systems of diffuse maxima cor- 
respond exactly to those positions in reciprocal space 
where the diffractions of the MDO1 and MDO2 struc- 
tures should be, is a further indication that the con- 
siderations concerning the symmetry of 7-Hg3SzCIz are 
correct. 

The third system of diffuse maxima does not cor- 
respond to any MDO structure but may be caused by 
regions of an ordered structure with 8-layer period. 

MDO~ 

~ A2/m 

MDO 2 

F 2/m 

Fig. 3. The sequence of layers in the structures of the maximum 
degree of order (MDOI and MDO2) belonging to the OD- 
groupoid family A(2)mm/{(bl/2)21/22}/{(bl/2)21/22}. The 
meaning of the symbolic structural elements is the same as 
in Fig. 2. 

Determination of the structure of a single layer 

To solve an OD structure consisting of equivalent 
layers means to determine the structure of the indi- 
vidual layer and its repetition (OD-groupoid family) 
scheme. This enables us to obtain all the necessary 
crystallochemical information about such a structure. 

The coordinates of all atoms except the atoms Hg(2) 
within one layer follow directly from the coordinates 
of these atoms in the superposition structure (see 
above). From the Hg(2) positions of the superposition 
structure two essentially different sets of positions 
within a layer, complying with the A2mm symmetry, 
would be in keeping (Fig.4). It should be easy to 
choose the correct one from a first generalized Patter- 
son projection P(1)(uv). In such a projection a peak at 
about (0, 0.2) should appear, corresponding to an inter- 
atomic vector 2-3 and 4-5. This peak will be positive 
in case (c), negative in case (b) (Fig.4). For such a 
Patterson function the peak-intensities of the 1 st system 
of diffuse maxima were used, because the others 
were poorly developed. Sums IF(hkl)lZ+lF(hkl)[2= 
IA(hkl)l 2 were used as coefficients for this generalized 
Patterson function, which therefore corresponds to a 
periodic structure (lattice constants a,b,c) containing 
only the even-numbered layers (see Appendix). The only 
prominent peak is indeed the one expected (and those 
related to it by symmetry and antisymmetry) and it is 
negative. Thus the case shown in Fig.4(b) is real- 
ized. 

In order to find the possible deviations of other 
atoms from their averaged positions (Table 2), the first 
generalized electron-density projection was calculated 
with the IA(hkl)l values and phases based on the Hg(2) 
coordinates. This projection revealed a small minimum 
in the Hg(3) position indicating that the z component 
of the Hg(2)-Hg(3) vectors exceeded c/4. After adjust- 
ing the virtual individual isotropic temperature coef- 
ficients, the R value dropped from 29-5% to 21.3%. 
The final difference synthesis showed only general back- 
ground without any significant features in the atomic 
positions. Thus the structure of the single layer may 
be considered as being essentially correct. 

A rather high value of R for the A-values has to be 
expected for the following reason. In order to obtain 
intensities above the background, a relatively big crys- 
tal, Cu radiation and film methods had to be used for 
the diffuse maxima. The absorption was therefore 
enormous (/z--1331 c m  -1) and could not be fully al- 
lowed for by the absorption correction.* For the sharp 
diffractions a far smaller crystal and counter methods 
yielded far more reliable data. 

The observed and calculated A-values are shown in 
Table 3; the corresponding atomic coordinates are in 
Table 4. The individual isotropic temperature coeffi- 

* Another  reason might be a possible deviation from the 
true OD-character;  this question cannot be discussed within 
this paper. 

A C 24B - 7 
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cients here have no simple physical meaning, since 
peak intensities have been used. 

In order to confirm the structure for MDOz as de- 
duced from the structure of the single layer and from 
the sequence of layers in the MDO1, a crystal with the 
smallest possible twinning effect on its diffraction pat- 
tern was chosen. The sequence of strong and weak dif- 
fuse maxima agreed very well with the calculated values 
for pure MDO1. 

The accuracy of coordinates 

Except for the Hg(2) atoms, the superposition structure 
yields only average atomic positions for the structure 
of the single layer, their possible deviations being con- 
cealed in the coefficients of the thermal vibrations. It 
would seem to be logical to determine the true values 
and their standard deviations by the least-squares tech- 
nique from the A-values. This would imply that the 
entire structure is only as good as the A-values are, 
regardless of the superposition structure. This is, how- 
ever, not so. A discussion of the corresponding equi- 
points in both Pbmm and A2mm groups, with respect 
to the a-symmetry of the OD-groupoid family (2), 
shows that only Zttg(3), ZS and the x coordinates of C1 
atoms need to be determined from the A-values, be- 
cause only those may be affected by overlapping in the 
superposition structure. All other coordinates can be 
derived from the superposition structure with far 
greater precision. The xcz coordinates however, showed 
strong interactions during the least-squares cycles and 
it was impossible to refine them using the data presently 
available. Thus, the values derived from the super- 
position structure were used. For the CI(1) atoms the 
larger fllz coefficient suggested a possible overlapping 
and accordingly a larger a-value was chosen. 

Description of the structure 

In Fig. 2 a portion of the structure is shown, containing 
two layers (zero and first) together with the symmetry 

scheme of the OD-groupoid family (2). The coordinates 
in Table 4 refer to the zero layer. The partial operations 
transforming the zero layer into the first layer (01a, or, 

~1  ] 02 

A 
w 1 

• ' '  O 

- * i  I 

I 
I 
I m N  

I 
I 

(~) 

0 3 

5 
I 
I 
I 

i 

(b) 

I *Z- 
I 
i 
I 

- - * 3  I 
I 

I 
I-- I 

(c) 

5 

Fig. 4. Positions of  the Hg(2) atoms within one layer as deduced 
from the superposition structure. Corresponding atoms are 
numbered in the same way. (a) x y  projection. The z coor- 
dinates may be either 0 or ½. Out of  the planes marked one 
must be a mirror plane, the other is a c-glide plane. (b) and 
(c) The two possible arrangements of  the atoms in y z  
projection. 
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Table 3. Observed and calculated A-values 
the values of  h, Fo, Fc and ~ are listed. Undetectable diffractions are marked by n. 
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g e n e r a l l y  229,2/9+10") * are the operations listed in the 
second line of the symbol (2). The axonometric picture 
of these two layers is shown in Fig. 5(a). Fig. 5(b) shows 
the other alternative. It is clear that both alternatives are 
geometrically equivalent. A similar situation exists be- 
tween the first and the second layer. The corresponding 
symmetry operations ( 1 2 0 . ,  or, generally 229-1, z29a) are lis- 
ted in the third line of the OD-groupoid family symbol (2). 

The interesting role of the Hg(1) atoms is worthwhile 
mentioning. They occupy all inversion centres on 
2 2 9 , 2 2 9 + 1 [ . . 2 1 ] ,  all the positions half way between them 
on z29,229+1[..2] and have to be considered as equally 
divided between two neighbouring layers. Such a 
division is as justified as, e.g. the division of an atom 
at (Oyz) between two neighbouring unit cells. With 
respect to the plane space group of the single layer 
A2mm, however, these halves occupy a general eight- 
fold position (Table 4). 

If the interatomic forces between two adjacent layers 
only were responsible for building up the structure, 
then we should have to expect continuous diffuse 
streaks f o r / = 2 n +  1 with uniformly distributed inten- 
sity, resulting from a random distribution of layers 
over their possible positions. The presence of maxima 
on these streaks shows that some forces, although 
small, between a given layer and the next-but-one layer 
do exist, preferring obviously the formation of the 
MDOx structure. The crystallization process is, how- 
ever, extremely sensitive to small changes in the crystal- 
lization conditions, giving thus a chance for the MDOE 
structure and perhaps another ordered 8-layered struc- 
ture to appear in any individual crystal. The tendency 
of the ~'-Hg3S2C12 to form twins and parallel inter- 
growths is obvious from the above considerations. 

Discussion 

The interatomic distances and bond angles, calculated 
with Busing, Martin & Levy's (1964) ORFFE function- 
and-error program, together with those of the ~ mod- 
ification (Frueh & Gray, 1968) are given in Table 5. 

The structures of both ~ and ~ modifications have 
in common that they consist of trigonal pyramids Hg3S 
with shared Hg atoms, forming thus [Hg3S2]~ + cations 
(Puff & Kiister, 1962; Aurivillius, 1967). The chloride 
ions are distributed in both modifications in a very 
similar way so that each Hg atom has six neighbours: 
two S atoms (linear sp bond) and four C1 ions in the 
corners of a distorted octahedra. The weaker Hg-C1 
bonds can be broken very easily in alkaline solutions 
(for references see Pascal, 1962) and the e l  ions com- 
pletely removed from the structures.]" 

* The indices preceding the symbol of a symmetry operation 
indicate the layers, transformed and resulting respectively (see 
Dornberger-Schiff, 1964 or 1966). 

]" In contradiction to the claim of Bacanov & Abaulina 
(1961), the brownish-black residue of such a decomposition is 
not an individual compound Hg3OS2, but consists of HgO 
and HgS (both modifications of each)• A report about this will 
be published elsewhere. 
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The network of Hg3S pyramids in both structures 
is, however, quite different. In the structure of the 
modification these pyramids possess 3rnm symmetry; 
the network of their covalent Hg-S bonds extends in 
three dimensions through the entire structure (Fig. 6). 
In the structure of the 7 modification the pyramids are 
distorted and the network of their covalent Hg-S 

(a) 

I 
<9 O- <9 

(b) 

Fig. 5. The structure scheme of y-Hg3S2C12. The shared corners 
of the pyramids are occupied by the Hg atoms; unshared 
corners are occupied by the S atoms. A pair of layers: one 
even and one odd layer (in this sequence), but only the 
C1 atoms at their common boundary are shown. (a) An ar- 
rangement of layers corresponding to Fig.2. (b) the other, 
geometrically equivalent arrangement. 

? 
Fig. 6. The structure scheme of ~-Hg3S2Cl2 (based on Frueh & 

Gray's (1968) data). The meaning of the structural units is 
the same as in Fig. 5 

bonds extends only in two dimensions. Each pair of 
adjacent layers consisting of one even and one odd 
layer (in this sequence) contains one such network with 
a system of Hg-S bonds penetrating their common 
boundary. None of these bonds penetrates the bound- 
ary between odd and even layers (in this sequence) and 
the entire structure is held together across these bound- 
aries only by much weaker Hg-C1 bonds. This explains 
the excellent (100) cleavage of y-Hg3N2C12. 

This work was carried out during the tenure of a 
Postdoctorate Fellowship granted by the National Re- 
search Council of Canada. The author wishes to ex- 
press his gratitude to Prof. A. J. Frueh Jr for suggesting 
the problem, for his interest and valuable discussions, 
and to Prof. K.Dornberger-Schiff for reading the 
manuscript and for helpful comments. The assistance 
of the staff membbrs of the McGill University Com- 
puting Centre during computational work is also grate- 
fully acknowledged. 

APPENDIX 

If ~b(~r/~) is the Fourier transform of the structural 
element with symmetry 2ram with respect to the origin 
at the intersection of its own mirror plane [. m.] and 
partial glide plane [bl/2..] (Fig.3) then Fo(~kl)= 
• ((kl) [1 + ( - 1 )  ~+Z] is the Fourier transform of the 
zero layer, referred to the periods b and e. The Fourier 
transform of the first layer is then 

Fl(~kl)=Fo(~kl) exp {27zi(2~+ -~- k)}, (3) 

where the two values of the parameter cq = + 1 corre- 
spond to the two possible positions of the first layer. 
All even layers L2~ and all odd layers L2~+1 are trans- 
lationally equivalent to the zero layer L0 and the first 
l@er L1 respectively, the translation vectors being 

~21~ 0~2P+l 
T2~ = 2pa0 + ~ -  b T2p+I = 2pa0 + ~ 2 - -  b ,  

where a0 is a vector perpendicular to the layer plane 
with an absolute value equal to the width of the indi- 
vidual layer. 

The Fourier transform of the entire structure con- 
taining 2M layers can now be expressed as a sum of 
the contributions of both even and odd layers (referred 
to the unit ao) 

F ( { k l ) = F o ( ~ k l ) - -  Z exp 2~zi 2p~ 
2M p=o 

~2~0 )} 1 M-1 
+ ~ k + Fl({kl) 22 

(~210+1 

=fo&+flSl. (4) 
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I f  k = 2k then (4) is independent  of  the p a r a m e t e r s  0~2~o 
and  c~2p+1 ( =  _+ 1) (and thus  of  the disorder)  and  

1 M - 1  
X exp {2rci(Zp~+n[c)}. S o = S 1 =  2 M p = o  

F o r  large values of  M, So = $1 = 0 unless 2 (  is equal  to 
an  integer n u m b e r  h, and  So = S1 =-} for  ~ =/~/2. In this 
case, using (3) 

F(Md) = ½-[q~(hkl) + q~(h/¢l) 

0C1 k)}] [1 + ( -  1)2~+q exp {2zci(/~ + T 

cq is i r relevant  and  F(hkl)#O only for  l = 2 / ;  thus  

F ( h k l ) = ~ ( h k l ) + ( -  1 ) ~ ( ] t k / ) .  (5) 

Equa t ion  (5) represents  the Four ie r  t r a n s f o r m  of  the 
superpos i t ion  structure.  

Fo r  the points  in reciprocal  space co r re spond ing  to 
the first system of  diffuse m a x i m a  we have  h = 2 ~ ,  
k = 2 n  +1  and  l = 2 m +  1. Subst i tu t ing into (3) and  (4) 
we have 

Fl(hkl) = Fo(hkl)i a1~ (6) 

)} o~2~o k 
- X exp 2rci ph+ -.2. S 0 -  2 M  p=o 

1 M - 1  
. . . . .  X ( - 1)~2p~ = s 

2 M  p=0 

1 M - 1  
X ( -  1)~2p+I ~ = d .  

S l =  2 M  p=0 

Table  5. Interatomic distances and bond angles in ~-Hg3S2C12 and their comparison with those in ~-Hg3S2C12 

Octahedron Octahedron Octahedron Octahedron 
around Hg(l) around Hg(2) around Hg(3) in ~-Hg3S2C12 

Distance Distance Distance Distance 
(,~) Mult. (A) Mult. (/~,) Mult. (A) Mult. 

Hg-S 2.38 (1) 2 2.37 (5) 2 2.44 (2) 2 2.45 (2) 2 

3.45 (6) 1 3.55 (7) 1 2-87 (1) 2 
3.31 (8) 1 3.27 (7) 1 

Hg-CI 3.11 (1) 4 3-19 (1) 1 3.01 (2) 1 3-38 (2) 2 
2.77 (2) 1 2.67 (2) 1 

3.97 (7) 2 3-99 (3) 2 3.99 (3) 2 > 4 2 
S-CI 3.95 (6) 2 3.97 (7) 2 3.95 (6) 2 3.94 (3) 4 

3.87 (7) 2 3-95 (6) 2 3-89 (3) 2 
3-85 (6) 2 3.86 (3) 2 3-85 (6) 2 3.83 (2) 2 

CI-CI >4  2 x 2  >4 4x 1 >4 2 x 2  >4  2 x 2  

S-Hg-S 

C1-Hg-CI 

S-Hg-CI 

Angle 
(o) 

176 (2) 
(180"0) 1 

93"9 (2) 2 

86.1 (3) 2 

92 (2) 2 
91 (2) 2 
89 (2) 2 
88 (2) 2 

Angle Angle Angle 
(o) (o) (o) 

166"4 (7) 1 157"8 (8) 1 

113"2 (9) 1 106-0 (4) 1 
89"8 (1) 1 91 (1) 1 
79 (1) 1 83 (1) 1 
77-7 (3) 1 80 (1) 1 

96"8 (4) 2 99"1 (9) 2 
90"5 (4) 2 93"5 (9) 2 
86"9 (3) 2 83"6 (8) 2 
83"4 (4) 2 80"3 (8) 2 

166 (1) 1 

109 (1) 1 
86.2 (7) 2 

78-7 (1) 1 

95-6 (6) 2 
92 (1) 2 
86 (1) 2 
83"6 (5) 2 

H g - S  

Hg-Hg 

Hg-Hg-Hg 

Hg-S-Hg 

Pyramid Hg3S 
y-Hg3S2CI2 

Distance 
(A) Mult. 

2-38 (1) 1 
2"37 (5) 1 
2"44 (2) 1 

3"56 (1) 1 
3-516 (3) 1 
3-476 (2) 1 

Angle (o) 

61-3 (2) 1 
59.9 (1) 1 
58.8 (l) 1 

96 (1) 1 
94 (1) 1 
95.8 (5) 1 

Pyramid Hg3S 
o~-Hg3S2C12 

Distance 
(A) Mult. 

2.45 (2) 3 

3.546 (1) 3 

Angle 
(°) 

60.0 3 

92 (1) 3 
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Both So and $1 are real numbers varying for different 
members of the OD-groupoid family (2). The square 

of [F(hkl)[ is 

[F(hkl)l 2= s2lFo[ 2 + d2lFa l 2 + sd(Foffl + ffoF,). 

From this and from (6) follows that 

IF(hkl)l z + IF(hkl)lZ=(s 2 + d z) [IFo(hkl)l z + IFo(hkl)12] , 

and taking the symmetry of individual layers into ac- 
count, 

IFo(hkl)l z =  IFl(hkl)l 2 

1 
- 2(s2 + d 2) [[F(hkl)l 2 + IF(hkl)[2]. 

Here 1/2(sZ+d 2) is a common weighting factor for all 
diffuse maxima of the first system. The values IA(hkl)l 2 
=lF(hkl ) lZ+lF(hkl ) l  2 are thus proportional to the 
values IFo(hkl)l z and may thus be used as if they were 
the IFI 2 values of a structure (lattice constants a,b,e) 
containing only the even-numbered layers of the MDOa 
structure. 
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Cation Distribution in YaAls-cGacO12Garnet 
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A direct determination of the cation distribution in the garnet system Y3A15-cGa~Os2 (with c -  1,2,3,4) 
from single-crystal X-ray diffraction data has been made. The lattice constants range from 12.002/~ 
for Y3A15012 to 12"275 A for Y3Ga5Ox2. The results show that even at higher values of c the gallium 
ions prefer the tetrahedral sites in the garnet structure more than the aluminum ions. Although the gal- 
lium ions are reported to have a larger ionic radius than the aluminum ions (the Shannon-Prewitt 
radii are Ga3+=0.47, A13+= 0"39 A), the fractions of the total Ga 3+ in the tetrahedral sites are 84%, 
77%, 68% and 63% for c--- 1, 2, 3 and 4 respectively. The value 60% represents a random distribution. 

Introduction 

Magnetic studies of the syszems Y3Fes-cAlcO12 and 
Y3Fes-cGaeO12* have shown that in the garnet struc- 
ture for c < 3 the Ga 3+, AP + and Fe 3+ ions have different 
preferences for the tetrahedral sites. This preference 
increases on going from Fe 3+ to AP + to Ga 3+. The 
studies of the effect of pressure and temperature on the 

* For an extensive bibliography see Geller, Cape, Espinosa 
& Leslie (1966). 

synthetic garnets, Y3Fe5012, Y3A15012 and YaGasO12 
(Marezio, Remeika & Jayaraman, 1966; Marezio, 
Remeika & Dernier, 1966) have corroborated this 
sequence of site preference, which cannot be explained 
in terms of a size effect. The Shannon & Prewitt (1968) 
ionic radii are Fe3+=0.50, AP+=0.39 and Ga 3+= 
0.47/~. 

In oxide compounds the greater preference of Ga 3+ 
ions, over both Fe 3+ and AP +, for the tetrahedral sites 
seems to be the reason for the differences between the 
gallium oxide compounds and the iron or aluminum 


