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The Crystal Structure of y-HgsS,Cl,
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Crystallographic Laboratory, McGill University, Montreal, P.Q., Canada
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The order—disorder (OD) structure of y-HgsS2Cl, has been solved from its X-ray diffraction pattern,
which contains both sharp spots and diffuse streaks with maxima. The structure consists of equivalent
layers. For each layer there are two possible positions relative to the preceding layer, so that the pairs
formed by the preceding layer and the given layer in either of these two positions are geometrically
equivalent. Thus the symmetry of the structure may be described by an OD-groupoid family, namely
ARy m m
{(b1/2) 2172 2}
{(b1/2) 212 2} (category Illa)

Although, as indicated by the diffuse streaks, the structure is disordered and thus no space group can
be assigned to it, all the crystals investigated contained blocks of three-dimensionally periodic structures
(polytypes), most frequently with the symmetry 42/m and F2/m, which are special cases of the symmetry
given above. The translation periods of the structure are 5=16-82 (1), c=9-081 (6) A with a=90",
the ‘width’ of one layer is ao=4-664 (3) A and there are four formula units within the one-layer unit.
The structure contains two-dimensional networks of HgsS pyramids with shared Hg-atoms, forming
[HgsS2]% cations. The bonds Hg-S within these networks are covalent; Hg-Cl bonds are ionic. The
model] of the structure explains the distribution of intensities in reciprocal space as well as some chemical
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and mechanical properties.

Introduction

As a part of a general project dealing with crystal
growth by means of gas transfer reactions, initiated
and supervised by Dr A.J.Frueh Jr in this Laboratory,
the crystal structure of y-mercurydisulphonium chlo-
ride (y-Hgs;S,Cl,) has been solved. The crystals were
prepared by Carlson (1966, 1967) as a by-product of
his successful attempts to simulate the conditions lead-
ing to the formation of mercury-ore deposits.

The compound Hg;S,Cl, was first described by Rose
(1828) and its properties (e.g. photosensitivity) have
since been studied (for references see Pascal, 1962), but
only recently Puff & Kiister (1962) investigated the
crystallographic properties of mercury-dichalcogenium
halides and determined the crystal structure of
Hg;S,Cl,. Carlson showed however that in addition to
Puff & Kiister’s structure (a-modification) there exist
two more modifications, f- and p-Hg;S,Cl,. Puff,
Harpain & Hoop (1966) independently found the same
modifications and, moreover, gave them the same
names. The structure of the a-modification has been
recently redetermined by Aurivillius (1967) and, inde-
pendently, by Frueh & Gray (1968) in this Laboratory.
Both these determinations confirmed Puff & Kiister’s
results.

Experimental

y-Hg;S,Cl, (Carlson, 1967) forms straw-yellow pris-
matic crystals elongated in the ¢ direction, reaching
maximum dimensions of 0-5x0-5x3 mm. Morpho-

* Present address: Institute of Inorganic Ch;mistry, Slovak
Academy of Sciences, Dubravskd cesta, Bratislava, Czecho-
slovakia.

logically they exhibit orthorhombic symmetry (point
group 2/mmm) and possess an excellent (100) cleavage.
All the crystals investigated were twinned or formed
parallel intergrowths.

The diffraction pattern consists of sharp spots and
diffuse streaks with maxima. The distribution of the
intensities of the sharp spots is the same for all the
crystals investigated; the distribution of the intensities
along the diffuse streaks varies from crystal to crystal.
The diffuse maxima can be divided into three mutually
independent systems. One of them is present in all
specimens and may be referred to a rectangular cell
with

a=9-328(5), b=16-82(1), c=9-081(6) A ,
the diffuse streaks being parallel to a*. The density
Dy =6-83(5) proves that this unit cell contains 8 for-
mula units; the X-ray density calculated on this basis
is 6-814. Indices 4k/ in the following will refer to this
cell. The entire diffraction pattern may be described
as follows:

I. Sharp spots:

hkl present only for fz=/71, k=2k, 1=2] (hk,I integers)
0k/ present only for k=2n.

I1. Diffuse streaks and maxima on them:

Ckl present only for k=2n+1, I=2n+1 (£ is a contin-
uous variable)

Ist system of maxima (always present) for
&=h (integer)

2nd system of maxima (in some specimens absent) for
E=(2n+1)/2

3rd system of maxima (in some specimens absent) for
E=(2n+1)/4

Diffractions with k+/=2n+1 are absent .
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The sharp spots exhibit orthorhombic symmetry, but
the maxima on the diffuse streaks show for some spe-
cimens orthorhombic, for other specimens only mono-
clinic symmetry with the ¢ axis unique.

The crystals showing well developed diffuse maxima
exhibit a slight deviation (about 0-5°) of the angle y
from 90°; this is the cause of the doubling of some
lines on the X-ray powder diffraction pattern observed
earlier by Carlson (1966).

For the measurement of the integrated intensities of
the sharp spots a single-crystal diffractometer based on
an equi-inclination Weissenberg geometry was used.
The goniometer settings were calculated with a pro-
gram written by Frueh (1966), and the calculation as
well as the others mentioned below was carried out on
an IBM 7044 computer. In order to reduce the dif-
ficulties caused by high absorption (x=670 cm~! for
Mo radiation), a needle-shaped crystal with average
diameter of about 60 ym was selected and its shape
measured with an optical goniometer and microscope.
The morphological data were then used for the ab-
sorption correction; this calculation was included in
a general data reduction procedure, carried out using
DTRDA and DTRDB programs written by Burnham
(1961). Out of a total of 486 structure factors examined,
304 turned out to be detectable.

The measurement of peak intensities of diffuse
maxima (Dornberger-Schiff, 1966; Sedlacek & Dorn-
berger-Schiff, 1965) was considerably more difficult
since only a few of about 40 crystals investigated yielded
Weissenberg photographs with reasonably well devel-
oped maxima. The best results were obtained with a
larger crystal (about 0-1 x 0-2 mm in cross section) and
Cu radiation. The peak intensities of stronger diffrac-
tions were determined using a recording microden-
sitometer and multiple-film technique; intensities of
weak diffractions were estimated visually; the data re-
duction was carried out in a manner similar to that
used for sharp diffractions. The majority of the spe-
cimens had the diffraction patterns exhibiting ortho-
rhombic symmetry even for the diffuse maxima, but
the relative values of the sums |F(hkl)|2+|F(hkl)|?
(A2-values) of the first system of these maxima turned
out to be the same for all specimens and were, as we
shall see, more valuable for the structure analysis than
the individual |F(hk!)|2 values would have been. A total
of 190 (178 non-zero) such A42-values were obtained.

The observed distribution in reciprocal space cor-
responds to a structure lacking periodicity in the a
direction, built of two-dimensionally periodic A-face
centred layers with periods b and c. It was assumed
that it is an OD-structure in Dornberger-Schiff’s (1964,
1966) sense.

The superposition structure

The distribution of sharp diffractions (k=2k) in recip-
rocal space, taken by themselves, corresponds to a
periodic structure, the so-called superposition structure
(see Appendix). This has orthorhombic symmetry, lat-
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tice constants' d=a, b=>b/2, ¢=c/2 and space group
Pbmm, P2;m or Pbm2. Its electron density g(xyz) is
related to the electron density of the actual structure
o(xyz) by the equation

o(xyz)=4[e(xyz)+o(x,y +%,2)]
=3lo(xyz)+eolx,y,z+1)] . )]

Intensity statistics indicated the presence of a sym-
metry centre (at least for the heavy atoms); thus Pbmm
was tentatively selected.

An attempt to solve the superposition structure by
use of the minimum function failed because of heavy
overlapping of the Hg-Hg vectors. However, a com-
parison of the intensities I(hk0) with A+k=2n with
the I(4k0) values of the a modification (which, because
of the space group 12,3, are present only for A+k =2n),
revealed their close similarity. Thus it was concluded
that the projections of both structures may contain
much the same atomic configuration, which in the case
of the « modification is repeated by a vector (a; +a,)/2.
Two separate Patterson functions calculated with the
[F(Ak0)|2 values with A+k=2n and with i+k=2n+1
respectively and the fact that pgm (the symmetry of
the xy projection of Pbmm) is a subgroup of cmm (the
symmetry of the xy projection of I2;3) made it pos-
sible to find the X and y coordinates of Hg atoms by
eliminating the Hg-Hg vectors non-existent in the y
modification. Fig.1 shows the projections of the struc-
tures of both the « and the y modification (superposi-
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Fig.1. xy projection of the crystal structure of a—Hg3S,Cl,
(above, based on Frueh & Gray’s (1968) data) and of the
superposition structure of y-Hg3S,Cl, (below) together with
a coherently drawn diagram of the symmetry elements. Unit
cells are outlined.
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tion structure) alongside a coherently drawn diagram
of the symmetry elements.

The fact that the relative intensities / (hki) with the
same A,k and with /=2rn and /=2n+ 1 respectively were
very similar, showed that the £ coordinates, at least
for heavy atoms, must be very close to 0 or 4. They
were found using the generalized Patterson projection
P D (uv). The coordinates of the light atoms were then
found by means of a three-dimensional Fourier syn-
thesis based on trial coordinates of Hg atoms. The
superposition structure was refined by the Busing,
Martin & Levy (1962) full-matrix least-squares pro-
gram ORFLS, with the atomic scattering factors for
neutral atoms published by Cromer & Waber (1965).
During the refinement cycles each observation was
assigned a weight inversely proportional to the square
of its standard deviation as determined by the data
reduction program from the counting statistics (Burn-
ham, 1961). The observations below background level
were replaced by values |Fy|min/}/3. For the last cycles
of the refinement an anomalous dispersion correction
was applied, as suggested by Patterson (1963). The
correction values were taken from International Tables
for X-ray Crystallography (1962). The final R value for
all diffractionsis 13-5%, for non-zero diffractions 8:9%.
The difference synthesis after the last cycle proved the
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correctness of the superposition structure and thus the
space group Pbmm as well.

The final calculated structure factors together with
the observed values are given in Table 1, the positional
and anisotropic thermal parameters are given in Table
2. It should, however, be kept in mind that the tem-
perature parameters in the expression for the tempera-
ture factor

7= exp {— (Buh?+ frok?+ Bi3/?
+ 2B12hk + 213kl + 2Bpskl)}

reflect both thermal and positional displacements of
atoms from their positions listed in Table 2 (see below).

The Hg(2) atoms in the superposition structure were
found to contribute only with half weight to the struc-
ture factors, compared with other atoms. Going back
to the equation (1) defining the superposition structure,
this must mean that such half-weight atoms occur
either at x=X%, y=7/2, z=% and (0}}) plus these co-
ordinates, or at x=2%, y=(J+1)/2, z=2 and (041) plus
these coordinates; thus they repeat with periods b=2b
and ¢=2¢. If, on the other hand, atoms occur at the
positions related by the translations b=b/2 (and thus
¢=c/2), they will show up in the superposition struc-
ture with weight 1 and will not contribute to the diffuse

Table 1. Observed and calculated structure factors for the superposition structure

In the columns from left to right the values of h, F, and F, are listed. Undetectable diffractions are marked by n.
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diffractions. Slight deviations from such positions,
leading to their true repetition periods b and ¢, would
cause changes in the apparent thermal vibrations. If
significant, these deviations can be revealed in analyz-
ing the diffuse maxima.

The symmetry of the real structure

As was shown above, the structure may be thought of
as being built of A-centred layers with periods b=2b
and ¢=2¢. Although arranged in a disordered manner,
their superposition structure [see equation (1)] is peri-
odic (space group Pbmm) irrespective of the disorder
and does not depend on details of their arrangement,
which varies from crystal to crystal.

An arrangement of structural elements, as shown in
Fig.2 left, has the following properties:

1. Its superposition structure has the space group
and lattice constants demanded.

2. It may be thought of as being built of geometri-
cally equivalent layers with plane space group A2mm.

3. Each layer is transformed into the next following
layer, among others, by the partial symmetry opera-
tions [..2], [.21/2.] and either [b+ys..] or [b—yf2. .].*

4, Starting from any one layer, two symmetry
operations [b11/;. .] and [b-y/;. .] lead to two different

* The indices on the symbols for the twofold axis and for
the glide plane indicate the factor with which the conventional
translation component of b/2 has to be multiplied in order to
obtain the actual translation component. Partial operations
transform only certain parts of the structure and not the entire
structure into itself.

THE CRYSTAL STRUCTURE OF y-HgsS:Cl:

positions for the subsequent layer. The two pairs of
layers formed in this way by the original and the sub-
sequent layer are geometrically equivalent, one pair
being transformed into the other, e.g. by the [.m.]
which transforms the original layer into itself and one
possible position of the subsequent layer into the other
possible position. Thus the symmetry of the structure
is in keeping with the definition of OD structures
(Dornberger-Schiff, 1964, pp.11-16). This OD char-
acter is the cause of the disorder and of the differencesin
arrangement of the layers occuring in different crystals.

It is evident that partial symmetry operations are
indispensable for the proper understanding of the
structures of this kind. The set of the symmetry opera-
tions in such cases does not form a group because they
are not all total. But the partial operations converting
a layer into a layer form a groupoid in the sense of
Brandt (Dornberger-Schiff, 1964, pp.16-18). Thus it is
convenient to characterize the symmetry of the whole
family of these OD structures (as described by 1. to 4.)
by an OD-groupoid family symbol, giving in the first
line the plane space group of the individual layer
(4 symmetry), and, within pairs of curly brackets, in
the second and third line the operations transforming
one layer into the subsequent one (¢ symmetry). In
our case the symbol reads

A2Q) m m
{(b1/2) 21/2 2} (2)
{B12) 2112 2}

The parentheses indicate the direction of missing
periodicity. The two separate lines for the ¢ symmetry

Table 2. Structure parameters for the superposition structure (related to abhe)
Standard deviations ¢ are in parentheses

Mult. x y z % B2 Bs3 B2 Bz B2
Hg(1) 2 ¥ 0 0 0-0063 (3) 0-0081 (4) 0-0311 (15) 0-0009 (4) 0 0’
He(?) & 02218(4) —0:0528 (5) 3 00083 (5) 0-0106 (7) 0:0057 (18) —0-0023 (5) 0 0
Hg(3) 2 0-1987 (3) 0 0-:0069 (4) 0-0083 (5) 0-0631 (24) 0 0 0
S 4 0:2471 (13) —0-0345 (16) 0 0-0046 (13) 0-:0099 (22) 0-0215 (60). —0-0019 (15) 0 0
Cl(1) 2 0-4708 (31) 3 3 0-0217 (48) 0-0089 (31) 0-0173 (92) 0 0 0
CI(2) 2 0-0162 (22) 1 3 0-0060 (22) 0-0145 (34) 0-0128 (74) 0 0 0

origin

]

P

Structural element with 2 mm point symmetry at Z=0

& Z=1/2

Fig.2. The structure scheme of y-HgsS>Cl; (right), showing two layers (one-layer unit outlined and the zmg(») coordinates given)
together with a coherently drawn diagram of the symmetry elements in the OD-groupoid family A(2)mm/{(b1/2)21/22}/
{(b1/2)21722}.
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indicate that there are two different kinds of pairs of
adjacent layers in the structure (Fig.2).

Within this OD-groupoid family there are two peri-
odic structures with maximum degree of order (MDO
structures). Both are monoclinic (¢ axis unique) and
consist of equivalent triples of layers. The first, MDOy,
is periodic after two layers and possesses symmetry
A2/m. The second, MDO,, is periodic after four layers,
possesses symmetry F2/m and lattice constants 2a,b,¢
(Fig.3). It is obvious that the first system of diffuse
maxima corresponds to MDO; and the second system
to MDO,. General experience shows that the MDO
structures occur most frequently among the members
of the family of OD structures. Thus the fact that the
first and the second systems of diffuse maxima cor-
respond exactly to those positions in reciprocal space
where the diffractions of the MDO; and MDO, struc-
tures should be, is a further indication that the con-
siderations concerning the symmetry of y-Hg;S,Cl, are
correct.

The third system of diffuse maxima does not cor-
respond to any MDO structure but may be caused by
regions of an ordered structure with 8-layer period.

b

Prain, 2, N N~ a 12 N

MDO,

a N2 N2

A2/m

e}, P S« S < 01

a1 U~ S s SO « (1>

MDO,

F2/m

Q= 3
2a | R Py PreZin

WW

a1 -~ s NN < § s

Fig. 3. The sequence of layers in the structures of the maximum
degree of order (MDO,; and MDO>) belonging to the OD-
groupoid family A(2Q)mm/{(6112)21/22}/{(b112)21/22}. The
meaning of the symbolic structural elements is the same as
in Fig.2.

AC2B-7
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Determination of the structure of a single layer

To solve an OD structure consisting of equivalent
layers means to determine the structure of the indi-
vidual layer and its repetition (OD-groupoid family)
scheme. This enables us to obtain all the necessary
crystallochemical information about such a structure.

The coordinates of all atoms except the atoms Hg(2)
within one layer follow directly from the coordinates
of these atoms in the superposition structure (see
above). From the Hg(2) positions of the superposition
structure two essentially different sets of positions
within a layer, complying with the A2mm symmetry,
would be in keeping (Fig.4). It should be easy to
choose the correct one from a first generalized Patter-
son projection P (uv). In such a projection a peak at
about (0,0-2) should appear, corresponding to an inter-
atomic vector 2-3 and 4-5. This peak will be positive
in case (c), negative in case (b) (Fig.4). For such a
Patterson function the peak-intensities of the 1st system
of diffuse maxima were used, because the others
were poorly developed. Sums |F(hk1)|2+|F(hk1)|2=
| A(hk1)|?2 were used as coefficients for this generalized
Patterson function, which therefore corresponds to a
periodic structure (lattice constants a,b,¢) containing
only the even-numbered layers (see Appendix). The only
prominent peak is indeed the one expected (and those
related to it by symmetry and antisymmetry) and it is
negative. Thus the case shown in Fig.4(b) is real-
ized.

In order to find the possible deviations of other
atoms from their averaged positions (Table 2), the first
generalized electron-density projection was calculated
with the |4(hk1)| values and phases based on the Hg(2)
coordinates. This projection revealed a small minimum
in the Hg(3) position indicating that the z component
of the Hg(2)-Hg(3) vectors exceeded c/4. After adjust-
ing the virtual individual isotropic temperature coef-
ficients, the R value dropped from 29-5% to 21:3%.
The final difference synthesis showed only general back-
ground without any significant features in the atomic
positions. Thus the structure of the single layer may
be considered as being essentially correct.

A rather high value of R for the A-values has to be
expected for the following reason. In order to obtain
intensities above the background, a relatively big crys-
tal, Cu radiation and film methods had to be used for
the diffuse maxima. The absorption was therefore
enormous (#=1331 cm~!) and could not be fully al-
lowed for by the absorption correction.* For the sharp
diffractions a far smaller crystal and counter methods
yielded far more reliable data.

The observed and calculated A-values are shown in
Table 3; the corresponding atomic coordinates are in
Table 4. The individual isotropic temperature coeffi-

* Another reason might be a possible deviation from the
true OD-character; this question cannot be discussed within
this paper.
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cients here have no simple physical meaning, since
peak intensities have been used.

In order to confirm the structure for MDO; as de-
duced from the structure of the single layer and from
the sequence of layers in the MDOy, a crystal with the
smallest possible twinning effect on its diffraction pat-
tern was chosen. The sequence of strong and weak dif-
fuse maxima agreed very well with the calculated values
for pure MDO,.

The accuracy of coordinates

Except for the Hg(2) atoms, the superposition structure
yields only average atomic positions for the structure
of the single layer, their possible deviations being con-
cealed in the coefficients of the thermal vibrations. It
would seem to be logical to determine the true values
and their standard deviations by the least-squares tech~
nique from the A-values. This would imply that the
entire structure is only as good as the A-values are,
regardless of the superposition structure. This is, how-
ever, not so. A discussion of the corresponding equi-
points in both Pbmm and 4A2mm groups, with respect
to the o-symmetry of the OD-groupoid family (2),
shows that only zmg@), zs and the x coordinates of Cl
atoms need to be determined from the A-values, be-
cause only those may be affected by overlapping in the
superposition structure. All other coordinates can be
derived from the superposition structure with far
greater precision. The x¢; coordinates however, showed
strong interactions during the least-squares cycles and
it was impossible to refine them using the data presently
available. Thus, the values derived from the super-
position structure were used. For the CI(1) atoms the
larger B, coefficient suggested a possible overlapping
and accordingly a larger g-value was chosen.

Description of the structure

In Fig.2 a portion of the structure is shown, containing
two layers (zero and first) together with the symmetry

THE CRYSTAL STRUCTURE OF y-Hg;SaCl.

scheme of the OD-groupoid family (2). The coordinates
in Table 4 refer to the zero layer. The partial operations
transforming the zero layer into the first layer (40, or,

A
b
a 1 e2 3 o4 5
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b
‘1 .2' | .5
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Fig. 4. Positions of the Hg(2) atoms within one layer as deduced
from the superposition structure. Corresponding atoms are
numbered in the same way. (@) xy projection. The z coor-
dinates may be either 0 or 4. Out of the planes marked one
must be a mirror plane, the other is a c-glide plane. (b) and
(o) The two possible arrangements of the atoms in yz
projection,

Table 3. Observed and calculated A-values
In the columns from left to right the values of A, Fo, Fe and « are listed. Undetectable diffractions are marked by 7.
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Table 4. Structure parameters for the one-layer structure (related to abc)

Standard deviations ¢ are in parentheses

Used for interatomic functions

Derived from one-layer coefficients

Derived from superposition structure

zZ

1

0
0-2738 (15)
0-2596 (51)

y
3

0-1514 (3)
0

0-1423 (8)

x
3
2218 (4)
1897 (3)
2471 (13)

0
0
0

z

0
0-2738 (15)
02596 (51)

y
0-1499 (4)

0
0-1330 (93)

0-2218
0-1944 (26)
0-2661 (202)

O QO Q
SO

AR
N DN
(=N =]

y

3
0-1514 (3)

0
0-1423 (8)

x

3
2218 (4)
1987 (3)
2471 (13)

0
0
0

Hg(1)
Hg(2)
Hg(3)

O HNO

0
0
0
0

4708 (100)

4708 (100)
0162 (22)
0162 (22)

O IO

0
0
0
0

4708 (31)
4708 (31)
0162 (22)
0162 (22)

0
0
0
0
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generally ,5, ,p+10)* are the operations listed in the
second line of the symbol (2). The axonometric picture
of these two layers is shown in Fig. 5(a). Fig.5(b) shows
the other alternative. It is clear that both alternatives are
geometrically equivalent. A similar situation exists be-
tween the first and the second layer. The corresponding
symmetry operations (;,0, or, generally ,p—,,p0) are lis-
ted inthe third line of the OD-groupoid family symbol (2).

The interesting role of the Hg(1) atoms is worthwhile
mentioning. They occupy all inversion centres on
29,2041 - -21], all the positions half way between them
on 2p,2p+1[..2] and have to be considered as equally
divided between two neighbouring layers. Such a
division is as justified as, e.g. the division of an atom
at (Oyz) between two neighbouring unit cells. With
respect to the plane space group of the single layer
A2mm, however, these halves occupy a general eight-
fold position (Table 4).

If the interatomic forces between two adjacent layers
only were responsible for building up the structure,
then we should have to expect continuous diffuse
streaks for /=2n+1 with uniformly distributed inten-
sity, resulting from a random distribution of layers
over their possible positions. The presence of maxima
on these streaks shows that some forces, although
small, between a given layer and the next-but-one layer
do exist, preferring obviously the formation of the
MDO; structure. The crystallization process is, how-
ever, extremely sensitive to small changes in the crystal-
lization conditions, giving thus a chance for the MDO,
structure and perhaps another ordered 8-layered struc-
ture to appear in any individual crystal. The tendency
of the y-Hg;S,Cl, to form twins and parallel inter-
growths is obvious from the above considerations.

Discussion

The interatomic distances and bond angles, calculated
with Busing, Martin & Levy’s (1964) ORFFE function-
and-error program, together with those of the « mod-
ification (Frueh & Gray, 1968) are given in Table 5.

The structures of both & and y modifications have
in common that they consist of trigonal pyramids Hg;S
with shared Hg atoms, forming thus [Hg;S,]%+ cations
(Puff & Kiister, 1962; Aurivillius, 1967). The chloride
ions are distributed in both modifications in a very
similar way so that each Hg atom has six neighbours:
two S atoms (linear sp bond) and four Cl ions in the
corners of a distorted octahedra. The weaker Hg-Cl
bonds can be broken very easily in alkaline solutions
(for references see Pascal, 1962) and the Cl ions com-
pletely removed from the structures.

* The indices preceding the symbol of a symmetry operation
indicate the layers, transformed and resulting respectively (see
Dornberger—Schiff, 1964 or 1966).

+ In contradiction to the claim of Bacanov & Abaulina
(1961), the brownish-black residue of such a decomposition is
not an individual compound Hg3;O0S;, but consists of HgO
and HgS (both modifications of each). A report about this will
be published elsewhere.
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The network of Hg;S pyramids in both structures
is, however, quite different. In the structure of the
modification these pyramids possess 3mm symmetry;
the network of their covalent Hg-S bonds extends in
three dimensions through the entire structure (Fig.6).
In the structure of the y modification the pyramids are
distorted and the network of their covalent Hg-S

()

Fig. 5. The structure scheme of y-Hg3S;Cl,. The shared corners
of the pyramids are occupied by the Hg atoms; unshared
corners are occupied by the S atoms. A pair of layers: one
even and one odd layer (in this sequence), but only the
Cl atoms at their common boundary are shown. (@) An ar-
rangement of layers corresponding to Fig.2. (b) the other,
geometrically equivalent arrangement.

Fig. 6. The structure scheme of a-Hg3S,Cl; (based on Frueh &
Gray’s (1968) data). The meaning of the structural units is
the same as in Fig.5

THE CRYSTAL STRUCTURE OF y-HgsS;Cl;

bonds extends only in two dimensions. Each pair of
adjacent layers consisting of one even and one odd
layer (in this sequence) contains one such network with
a system of Hg-S bonds penetrating their common
boundary. None of these bonds penetrates the bound-
ary between odd and even layers (in this sequence) and
the entire structure is held together across these bound-
aries only by much weaker Hg-Cl bonds. This explains
the excellent (100) cleavage of y-Hg;S,Cl,.
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search Council of Canada. The author wishes to ex-
press his gratitude to Prof. A.J. Frueh Jr for suggesting
the problem, for his interest and valuable discussions,
and to Prof. K.Dornberger-Schiff for reading the
manuscript and for helpful comments. The assistance
of the staff members of the McGill University Com-
puting Centre during computational work is also grate-
fully acknowledged.

APPENDIX

If &(¢énl) is the Fourier transform of the structural
element with symmetry 2mm with respect to the origin
at the intersection of its own mirror plane [.m.] and
partial glide plane [by;,..]1 (Fig.3) then Fy(¢kl)=
D(CkD) [1+(—1)¥+] is the Fourier transform of the
zero layer, referred to the periods b and ¢. The Fourier
transform of the first layer is then

Fy(CkD)=FoGkl) exp 2mi2e+ 520}, ()

where the two values of the parameter a;= + 1 corre-
spond to the two possible positions of the first layer.
All even layers L,y and all odd layers L,,+, are trans-
lationally equivalent to the zero layer L, and the first
layer L, respectively, the translation vectors being

Top=2pag+ aizp b Top+1=2pay+ Qeptt b,
where a, is a vector perpendicular to the layer plane
with an absolute value equal to the width of the indi-
vidual layer.

The Fourier transform of the entire structure con-
taining 2M layers can now be expressed as a sum of
the contributions of both even and odd layers (referred
to the unit ay)

1 M-1
F&kd) = F@kD) o = exp{Zm' (2p¢

Y2p LMy
+2 k)}+F1(¢kl) a7 2,

exp{27zz‘ (pr + EZ%LL/{ )}

=FSo+ F1S; . 4
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If k =2k then (4) is independent of the parameters oy
and asp+; (= £ 1) (and thus of the disorder) and
1 M-
So=51= 1y ,,_2
For large values of M, S;=S,=0 unless 2¢{ is equal to
an mteger number A, and Sy=S; =1 for £=4/2. In this
case, using (3)

F(hkl)=1[®(hk!)+ D(hkI)

exp {27i(2p& +nk)} .

exp {2m(h+ k)}] [14(— 1%+,
a, is irrelevant and F(Akl)#0 only for /=2[; thus

F(hkD) = ®(hkD) +(— 1)EDRRT) . )
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Equation (5) represents the Fourier transform of the
superposition structure.

For the points in reciprocal space corresponding to
the first system of diffuse maxima we have h=2¢,
k=2n+1 and /=2m+ 1. Substituting into (3) and (4)
we have

Fi(hkl) = Fy(hkl)iotk (6)
So= Mz ex {2 z( A+ -“’k)}
0= oM, Pemi\ P
1
— N2pk =
= i pZO( 1)k =g
1
Sy = M pZ'O(—l)°‘2D+1" d.

Table 5. Interatomic distances and bond angles in y-HgS,Cl, and their comparison with those in a-Hg;S,Cl,

Octahedron Octahedron Octahedron Octahedron
around Hg(1) around Hg(2) around Hg(3) in a-Hg3S,Cl,
Distance Distance Distance Distance
A) Mult. A) Mult. (A) Mult, A) Mult.
Hg-S 2-38 (1) 2 2:37 (5) 2 2:44 (2) 2 2:45 (2) 2
3:45 (6) 1 3:55(7) 1 2:87 (1) 2
. . 3-31 (8) 1 327 (7) 1
He-Cl 311Q) 4 319 (1) 1 3-01 (2) 1 338 (2) 2
2:77 (2) 1 2:67 (2) 1
397 (7) 2 399 (3) 2 399 (3) 2 >4 2
S-Cl 3-95 (6) 2 397 (7) 2 3-95 (6) 2 3:94 (3) 4
3-87 (7) 2 3-95 (6) 2 3-89 (3) 2
3-85 (6) 2 3-86 (3) 2 3-85 (6) 2 3-83 (2) 2
CI-Cl >4 2x2 >4 4x1 >4 2x2 >4 2x2
Angle Angle Angle Angle
) © © )
176 (2)
S-Hg-S (180-0) 1 166-4 (7) 1 157-8 (3) 1 166 (1) 1
. 113:2 (9) 1 106-0 (4) 1 109 (1) 1
[ 39@ 2 89-8 (1) 1 91 (1) 1 862(1) 2
Cl-Hg-Cl
1 861 (3) ) 79 (1) 1 83 (1) 1
777 (3) 1 80 (1) 1 787 (1) 1
92 (2) 2 96-8 (4) 2 99-1 (9) 2 956 (6) 2
S-Hg-Cl 91 (2) 2 90-5 (4) 2 93-5 (9) 2 92 (1) 2
89 (2) 2 869 (3) 2 83-6 (8) 2 86 (1) 2
88 (2) 2 834 (4) 2 80-3 (8) 2 836 (5) 2
Pyramid Hg3;S Pyramid Hg3S
7-Hg3$:Cl, a-Hg3S,Clp
Distance Distance
A) Muit. A) Muit.
2:38 (1) 1
Hg-S 2:37 (5) 1 2-45 (2) 3
2:44 (2) 1
356 (1) 1
Hg-Hg 3-516 (3) 1 3:546 (1) 3
3-476 (2) 1
Angle Angle
) ©
61-3(2) 1
Hg-Hg-Hg 599 (1) 1 60-0 3
58-8 (1) 1
96 (1) 1
Hg-S-Hg 94 (1) 1 92 (1) 3
95-8 (5) 1
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Both S, and S, are real numbers varying for different
members of the OD-groupoid family (2). The square
of |F(hkl)| is

|F(hkD)[2= 52| Fo[2+d?| Fy|* 4 sd(FoFy + FoFy) .
From this and from (6) follows that
|F(RKD)2+ | F(RkT)|2 = (s2+d?) [|Fo(hkD) 2+ | Fo(hKD)I?]

and taking the symmetry of individual layers into ac-
count,

|Fo(hk D)2 = | Fy(hkD)|?

_ 1

T 2(s24-d?)
Here 1/2(s2+d?) is a common weighting factor for all
diffuse maxima of the first system. The values | A(kk])|2
=|F(hkl)|2+|F(hk])> are thus proportional to the
values |Fo(hk!)|? and may thus be used as if they were
the [F|2 values of a structure (lattice constants a,b,c)

containing only the even-numbered layers of the MDO,
structure.

(|F(hkD) 2+ | F(RKDIY] .

References

AURIVILLIUS, K. (1967). Ark. Kemi, 26, 497.
BacaNov, S. S. & ABAULINA, L. 1. (1961). Izv. Sibir. Otd.
ANSSSR, No. 10,67.

Acta Cryst. (1968). B24, 1670

THE CRYSTAL STRUCTURE OF y-Hg;S:Cl,

BurNHAM, C. W. (1961). Thesis, Massachusetts Institute
of Technology, Cambridge, Mass.

Busing, W. R., MarTiN, K. O. & Levy, H. A. (1962).
ORFLS, A Fortran Crystallographic Least-Squares Pro-
gram. Oak Ridge National Laboratory, Oak Ridge,
Tennessee.

Busing, W. R., MarTIN, K. O. & Levy, H. A. (1964).
ORFFE, A Fortran Crystallographic Function and Error
Program. Oak Ridge National Laboratory, Oak Ridge,
Tennessee.

CarwLson, E. H. (1966). Thesis, McGill Univ. Montreal.

CarLsoN, E. H. (1967). J. Cryst. Growth, 1, 271.

CROMER, D. T. & WAaBER, J. T. (1965). Acta Cryst. 18, 104.

DORNBERGER-SCHIFF, K. (1964). Abh. dtsch. Akad. Wiss. 3.

DORNBERGER-SCHIFF, K. (1966). Lehrgang iiber OD-Struk-
turen. Berlin: Akademie Verlag.

Fruen, A. J. Jr (1966). Private communication.

Fruen, A. J. JR & Gray, N. H. (1968). Acta Cryst.
B24, 156.

International Tables for X-ray Crystallography (1962). Vol.
IT1, Table 3.3.2C. Birmingham: Kynoch Press.

Pascar, P. (1962). Nouveau Traité de Chimie Minérale,
V, p. 639-640. Paris: Masson.

PATTERSON, A. L. (1963). Acta Cryst. 16, 1255.

Purr, H. & KUSTER, J. (1962). Naturwissenschaften, 49, 299.

Purr, H., HARPAIN, A. & Hoop, K. P. (1966). Naturwissen-
schaften, 53, 274.

Rosg, H. (1828). Pogg. Ann. 13, 59,

SEDLACEK, P. & DORNBERGER-SCHIFF, K. (1965). Acta Cryst.
18, 401.

Cation Distribution in Y3Als_.Ga.O2Garnet

By M. MAREZIO, J.P. REMEIKA AND P.D. DERNIER
Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey, U.S.A.

(Received 20 November 1967)

A direct determination of the cation distribution in the garnet system Y3Als-.Ga.O;2 (with c~1,2,3,4)
from single-crystal X-ray diffraction data has been made. The lattice constants range from 12-:002 A
for Y3Als0;; to 12:275 A for Y3GasOyz. The results show that even at higher values of ¢ the gallium
ions prefer the tetrahedral sites in the garnet structure more than the aluminum ions. Although the gal-
lium ions are reported to have a larger ionic radius than the aluminum ions (the Shannon-Prewitt
radii are Ga3+=0-47, Al3+=0-39 A), the fractions of the total Ga3+ in the tetrahedral sites are 84%,
77%, 68% and 63% for c~1, 2, 3 and 4 respectively. The value 60% represents a random distribution.

Introduction

Magnetic studies of the sysiems Y;Fes—Al,O;, and
Y3Fes—cGacOy,* have shown that in the garnet struc-
ture for ¢ < 3 the Ga3+, Al3+ and Fe3+ ions have different
preferences for the tetrahedral sites. This preference
increases on going from Fe3* to AI3* to Ga3+. The
studies of the effect of pressure and temperature on the

* For an extensive bibliography see Geller, Cape, Espinosa
& Leslie (1966).

synthetic garnets, Y;FesO;,, Y3Al;0,, and Y;GasO,,
(Marezio, Remeika & Jayaraman, 1966; Marezio,
Remeika & Dernier, 1966) have corroborated this
sequence of site preference, which cannot be explained
in terms of a size effect. The Shannon & Prewitt (1968)
ionic radii are Fe3t=0-50, Al3*=0-39 and Ga3+=
0-47 A.

In oxide compounds the greater preference of Ga3+
ions, over both Fe3* and Al3+, for the tetrahedral sites
seems to be the reason for the differences between the
gallium oxide compounds and the iron or aluminum



